An improved snake model for automatic extraction of buildings from urban aerial images and LiDAR data
نویسندگان
چکیده
Automatic extraction of objects from images has been a topic of research for decades. The main aim of these researches is to implement a numerical algorithm in order to extract the planar objects such as buildings from high resolution images and altitudinal data. Active contours or snakes have been extensively utilized for handling image segmentation and classification problems. Parametric active contour (snake) is defined as an energy minimizing spline guided by external constraint forces and influenced by image forces that pull it toward features such as lines or edges. The snake deforms itself from its initial position into conformity with the nearest dominant feature by minimizing the snake energy. The snake energy consists of two main forces, namely: internal and external forces. The coefficients of internal and external energy in snake models have important effects on extraction accuracy. These coefficients together control the weights of the internal and external energy. The coefficients also control the snake’s tension, rigidity, and attraction, respectively. In traditional methods, these weight coefficients are adjusted according to the user’s emphasis. This paper proposes an algorithm for optimization of these parameters using genetic algorithm. Here, we attempt to present the effectiveness of Genetic Algorithms based on active contour, with fitness evaluation by snake model. Compared with traditional methods, this algorithm can converge to the true coefficients more quicker and more stable, especially in complex urban environments. Experimental results from used dataset have 96% of overall accuracy, 98.9% of overall accuracy and 89.6% of k-Factor.
منابع مشابه
Aerial Images and Lidar Data Fusion for Automatic Feature Extraction Using the Self-organizing Map (som) Classifier
This paper presents work on the development of automatic feature extraction from multispectral aerial images and lidar data based on test data from two different study areas with different characteristics. First, we filtered the lidar point clouds to generate a Digital Terrain Model (DTM) using a novel filtering technique based on a linear first-order equation which describes a tilted plane sur...
متن کاملObject-based Classification of an Urban Area through a Combination of Aerial Image and Airborne Lidar Data
This paper studies the effect of airborne elevation information on the classification of an aerial image in an urban area. In an urban area, it is difficult to classify buildings relying solely on the spectral information obtained from aerial images because urban buildings possess a variety of roof colors. Therefore, combining Lidar data with aerial images overcomes the difficulties encountered...
متن کاملAn Automatic Approach for Building Top Silhouette Extraction Using a Pgvf Snake Model
The recent availability of high-resolution remote sensing technology provides a new data source for urban geospatial data acquisition, which has made it possible to detect buildings quickly and automatically. The building data are used for a variety of applications, including urban planning, land-use monitoring, map updating, and 3D city modeling. However, conventional approaches for building e...
متن کاملFusion of Airborne LiDAR Data and Satellite SAR Data for Building Classification
In an airborne photogrammetry, a geometrical modeling and object classification can be automated using color images. Stereo matching is an essential technique to reconstruct 3D model from images. Although, object classification methods are automated using height data estimated with the stereo matching, it is difficult to recognize construction materials, such as woods and concrete. The construc...
متن کاملUrban Object Extraction from Digital Surface Model and Digital Aerial Images
The paper describes two different methods for extraction of two types of urban objects from lidar digital surface model (DSM) and digital aerial images. Within the preprocessing digital terrain model (DTM) and orthoimages for three test areas were generated from aerial images using automatic photogrammetric methods. Automatic building extraction was done using DSM and multispectral orthoimages....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers, Environment and Urban Systems
دوره 34 شماره
صفحات -
تاریخ انتشار 2010